提供者:刘唯
简介
Imagenet数据集有1400多万幅图片,涵盖2万多个类别;其中有超过百万的图片有明确的类别标注和图像中物体位置的标注,具体信息如下: 1)Total number of non-empty synsets: 21841 2)Total number of images: 14,197,122 3)Number of images with bounding box annotations: 1,034,908 4)Number of synsets with SIFT features: 1000 5)Number of images with SIFT features: 1.2 million
Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。
下载地址
http://www.image-net.org/about-stats
相关论文
[1]Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Image Net: A Large-Scale Hierarchical Image Database. In: CVPR (2009)
[2] A. Artale, B. Magnini, and S. C. Wordnet for italian and its use for lexical discrimination. In AI*IA97, pages 16–19, 1997.
[3] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based image classification. In CVPR08, pages 1–8, 2008.
[4] B. Collins, J. Deng, K. Li, and L. Fei-Fei. Towards scalable dataset construction: An active learning approach. In ECCV08, pages I: 86–98, 2008.
[5] C. Fellbaum. Word Net: An Electronic Lexical Database. Bradford Books, 1998.
[6] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object categories from google’s image search. In ICCV05, pages II: 1816–1823, 2005.
[7] M. Fink and S. Ullman. From aardvark to zorro: A benchmark for mammal image classification. IJCV, 77(1-3):143–156, May 2008.
[8] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, Caltech, 2007.